
Internet For All - Fairness in multiplayer network
games
Felix Kosian

felix.kosian@tum.de
Technical University Munich

Munich, Germany

Abstract
Fairness is one of the key elements for competitive first
person multiplayer games. Not only the absolute fairness
but especially the perceived fairness is important for a good
player experience and therefore a necessity for a successful
game. Achieving an accepted level of fairness is not always
given, so in this paper we will first go over the key elements
of fairness, the basics of networking and why only a client-
server model will be able to prevent cheating. Then we will
create the basic server-client interaction guidelines used in
many currently popular games, look at common problems
like "Shot around a Corner" and finallywewill look at various
other factors that will help to improve the perceived fairness
regarding latency problems.

1 Introduction
Video games are one of themost used forms of entertainment,
especially for younger generations[18]. The most played
form of them aremultiplayer gameswith first-person-shooter
(FPS) leading in popularity[6]. To provide the most fun expe-
rience for all, fairness is a key cornerstone in a social online
environment.
In this paper we will focus on the perceived fairness of play-
ers which is more important for a better experience than the
absolute fairness. Over the last two decades there have been
many concepts which address methods to improve problems
in network games. This paper will collect and summarize
the most important factors and modern solutions regarding
latency.
We will not discuss network congestion, packet loss com-
pensation, update rates and complete game state update vs
partial game state update or other elements like matchmak-
ing and cross-play balancing which are extensive research
areas on their own.

2 Fairness
While the absolute fairness can be defined as "the qual-
ity of treating people equally or in a way that is right or
reasonable"[1], the perceived fairness can strongly deviate.
Especially the fairness during a process that led to a certain
outcome are important in competitive video games.
Following characteristics where identified to have an impor-
tant impact on fairness[14]:

1. Accuracy. Procedures are based on accurate and valid
information;

2. Bias suppression. Procedures are not affected by per-
sonal bias, preconception or self-interest;

3. Consistency. Procedures are consistently applied across
people and time;

4. Correctability. Procedures provide opportunities to
modify or reverse decisions such as allowing appeals
and grievances to be considered;

5. Ethicality. Procedures are congruent with the moral
and ethical values held by the people affected;

6. Representativeness. Procedures are representative in
reflecting the basic concerns of the people affected.

2.1 Perceived unfairness in FPS
For the perceived fairness in FPS games we will focus on
examples which show unfairness in Accuracy, Consistency,
Correctability and Representativeness.

2.1.1 Control loss. If an input of a player has no effect,
the player has no control over the game anymore. This can be
the case if the input is not recognized or there is no feedback
for this action.
An example is if the button click for shooting has no effect.

2.1.2 Control delay. If an input of a player has the ex-
pected connected result but the execution is delayed and the
expected overall result is different.
One examples is a player who wants to jump over a gap
while moving but falls in because the jump is executed after
the player walked over the edge.
Another example is the case where a player is shooting an-
other player but the shot is not hitting because the shot was
executed later and the other player is not at the same spot
anymore or the position of the other player is displayed
delayed where in fact the other player moved away already.

2.1.3 Implausible outcome. This includes the cases above
but has some more specific situations that are by now quite
infamous in FPS games.
The first example is the so called Rubberbanding. This occurs
if a player is not moving normally in one direction but the
character is teleporting back and forth along its path which
makes it impossible for other players to interact with it.
The second example is called "Shot around a Corner"[20, 23].
This is the case when Player 1 is shooting at Player 2 who



is running towards the cover. For Player 1, the shot is hit-
ting because Player 2 is still in the open. Player 2 is in his
view already behind cover but still gets hit even though this
should not be possible in their view.

2.1.4 Cheating. While cheating is not the main topic of
this paper, it is still important to consider for choosing a
network architecture. Cheating in the context of network
games includes all variants of a player manipulating the data
which is sent over the network to gain an unfair advantage
over other players. This makes it impossible to have a fair
game and for that reason we have to consider the received
data from other players as untrustworthy.
We can therefore only consider data that lies inside the al-
lowed inputs. E.g. the absolute position of another player
could be manipulated so we should only allow their button
presses for movement to be considered.

2.2 False case of unfairness
Point 2, Bias suppression, in particular can contradict the
perception of fairness and can be a cause of false cases of
unfairness. This case is oftenwhen players complain that that
the game is unfair whereas only their ability of competing
with other players is lacking[2].

3 Background Networking
3.1 Network Connection
For a network game to work, information has to be ex-
changed between multiple machines. This results in physical
limitations which greatly impact player experience and fair-
ness and are often the root of the unfair examples given
before.

3.1.1 Network Latency. Network latency or in the con-
text of gaming often called lag, ping, round-trip-time (RTT)
or network delay[16] is for this paper defined as the time
it takes for an input on one machine to reach another ma-
chine and send information back to the original or another
machine. In case of an FPS this can be the time for a player
input and the resulting movement of the ingame character.
Another case can be the firing of a weapon and the hit of an
opponent or the Shot around a Corner example.
As a result, players with low latency will send and receive
changes faster and can react faster than players with high
latency and have an unfair advantage. Therefore lower la-
tency results in a better player experience[22].
Latency increaseswith physical distance, connectionmedium,
intermediate steps and processing speeds.

3.1.2 Packet loss. Packet loss is the occurrence of data
being lost on the way to its destination. As a result informa-
tion of commands like movement or firing of a weapon don’t
reach it’s destination and have to be compensated, ignored or
sent again. This can also be the cause of the Rubberbanding
example.

Packet loss increases with bad physical connection, message
routing issues such as congestion and processing errors.
Dealing with packet loss is important for a good player ex-
perience as well but we will not focus on this topic in this
paper.

3.2 Network architecture
Typical networks for FPS games are Peer-To-Peer and Client-
Server architectures. In a Peer-To-Peer system, every ma-
chine has a connection to every other machine. Often all
machines are then called clients. In a Client-Server system,
every machine of one player, called client, has a connection
to one other machine, called dedicated server.
The special case where one machine is a server and a client,
called host, will be handled like a dedicated server.

3.2.1 Validation. Validation describes which instance is
allowed to call an action valid. In other words which machine
is allowed to change the game state for all participants. E.g.
a shot is registered and is allowed to deal damage.

3.2.2 Client side. Client side validation brings the bene-
fit of having no delay for the client. When the player aims
and shoots directly at a target, the client verifies the hit and
sends the information to the server or other players. This is
extremely important to have a responsive game to prevent
frustration for the players.
The downside is that now this client can send any informa-
tion, including incorrect and manipulated information the
other participants.
In a Peer-To-Peer system, every client can only validate them-
selves because there is no instance which solely controls the
state of the game.

3.2.3 Server side. With a Server side validation, all infor-
mation has first to be sent to the server. There the informa-
tion about e.g. positions and shots come together and can be
evaluated without manipulation. The results then get sent
back to all clients.
While this ensures correct information, the information will
be delayed. Players have to shoot in front of other players so
when the information reaches the server, the shot and the
other player are at the same position[3]. This leading of the
shot can differ with the different latency of the players and
as a result leads to frustration and the feeling of an unfair
and not correctly working game.

3.2.4 Trusted information. For a network game with
unknown participants, the question is which information can
be trusted. Because it is not possible to control all personal
machines, the only trusted machine is the dedicated server
which can be controlled by an entity trusted by all players.
The dedicated server architecture is the only way to prevent
a majority of cheats[4]. Therefore we will only consider this
architecture in following examples.

2



4 Basic Client-Server interaction
In this section we will go through a few examples of two
players interacting with each other. Step by stepwewill solve
upcoming problems to reach a basic functioning client-server
guideline concept[3–5, 7] which is used by many currently
popular games like Valorant[9], CS:GO[17], Fortnite[12],
Overwatch[15], Apex Legends[13] or Battlefield V[11].

4.1 Player Movement
In this example Player 1 is starting to move in one direction
and then stops after a few meters again. Player 2 is only
watching this action.

4.1.1 Movement: client side. Player 1 is locally moving
and sending the new state of it’s position to the server where
this information is forwarded towards Player 2 where the
position of Player 1 is displayed delayed.

Figure 1. Player movement client-side

4.1.2 Movement: server side. Now to prevent cheating
of Player 1 we only send the action to the server to validate.
It seems like the state after the movement action is simulta-
neously received at both players.
Not only is that not true if the RTT for both players is differ-

Figure 2. Player movement server-side

ent, but Player 1 has a delay of it’s actions and the resulting
state as well.

Figure 3. Player movement server-side, different RTT

4.1.3 Movement: server side with local client side pre-
diction. To prevent this delay, the client can predict the same
action locally parallel to sending the action to the server.
This seems fine but what happens if multiple actions are

Figure 4. Player movement server-side, local prediction

sent before the state of the ones before come back? We will
have a mismatch between the prediction and the validated
state. Therefore, we have to move the Player 1 back but then
when the second state come back we have to move Player 1
forwards again. This can be one reason for Rubberbanding.

4.1.4 Movement: local client side prediction + server
reconciliation. Instead of resetting the Player 1 to the state
of the server we can add an identifier to the actions and keep
a record of the actions. Then if Player 1 gets a response we
can predict with those action again.

3



Figure 5. Player movement server-side, local prediction mis-
match

Figure 6. Player movement server-side, local prediction with
reconciliation

4.1.5 Movement: external prediction. Until now Player
2 only observed the state of Player 1. In a real-time game
the gap between those observations has to be continuously
simulated. This can be done either by 1) dead reckoning, also
called extrapolation, which is the prediction from a position
and a direction with the assumption that the movement will
be linear.
Or method 2) waiting for the next state and then interpolat-
ing the movement in between two states.
While method 1) is accurate most of the time and does not
introduce more delay, it can lead to wrong predictions and
Rubberbanding as well.
Method 2) is always accurate but introduces a larger delay.

4.2 Player 1 shooting and Player 2 moving
Let’s look at a more complex scenario. Player 1 sees Player
2 moving perpendicular in front of it, aims at the player and
shoots.

4.2.1 Shot not hitting. Now this information is sent to
the server. The server checks if the shot hit anything but
because of the delay, Player 2 already moved forwards, so

Figure 7. Player movement server-side, external reckoning

Figure 8. Player movement server-side, external interpola-
tion

no hit is registered. In other words, Player 1 only sees where
Player 2 has been before and would have to lead their shot.
This is frustrating because it is impossible to know how far
to lead the shot because this is dependent on the delays.

4.2.2 Server side reconstruction. We can solve this prob-
lem by reconstructing the state of the game on the server for
the view of Player 1 during the shot. This is possible if we
have timestamped all actions which were sent and received
to and from the server. The server can check to which out-
come those actions lead for Player 1. Of course this increases
the advantage of Player 1 because independent of where
Player 2 is at this point of time, the shot will be counted as
valid.

4.2.3 Shot around a Corner. This leads to the situation
where Player 2 moved around a corner into cover to pre-
vent being shot but because of the reconstruction, gets hit
anyways.

4



Figure 9. Player movement and shooting

Figure 10. View of Player 1 on the server

4.3 Remaining Problems
This server-client interaction is the basis of most modern
competitive FPS games. To recap, we now have a server
which validates all actions and controls the game state. Fur-
thermore, it reconstructs the game state in favor of the
shooter. The clients predict locally the own interactions and
interpolate the actions of other players.
As a result we have a much better player experience but still
a few more issues to solve:

• high RTT: players with high ping have an unfair advan-
tage because of the reconstruction lag compensation

• Shot around a Corner problem
• the game feels sometimes unresponsive because of
having only simple local prediction

5 Solutions
There are numerous ways to reduce the network problems
or mitigate their effects. In the following section we will go

through different approaches. These can also be combined
for the best results.

5.1 Reducing Latency
The most effective approach is to reduce the problem at the
origin, the network delay between client and server.

5.1.1 Local Competition. The simplest method to reduce
latency is to reduce the distance which the data has to travel.
This is one reason why official competitions where teams
compete against each other are held in a specific location
with clients directly connected to a local server.

5.1.2 Accelerator Network. Nowadays some cloud ser-
vice providers like Amazon Web Services (AWS) provide a
parallel network to the standard internet. Games can for-
ward their data to the nearest router which then leads the
data around the world with fewer hops and less traffic[8].

5.1.3 Excluding players. Often games have a maximum
RTT. If players have a higher RTT to the server than allowed,
they will be disconnected from the game[20]. While this
ensures a low ping for all players in the match, the players
who can’t participate have no solution. Of course in general
if the RTT is too high, it will be impossible to have a real
time game playable. In those cases other game concepts are
needed that do not require fast interactions between players.

5.1.4 Grouping players with similar RTT. To increase
the absolute fairness, one match could be created only with
players with similar RTT. In this case no player would have
an advantage over other players. The downsides are that
this is maybe not possible due to a small amount of players,
multiple people with different pings wanting to play in the
same match or RTT changes during the match.

5.1.5 Multi-server. The idea behind a multi-server ap-
proach is to connect all clients to the closest server. Then
only the servers have to exchange information between each
other. As a result the RTT of an interaction between two
players can be much faster and in the worst case still as fast
as a single server approach.

5.2 Compensation methods
If the RTT can’t be reduce anymore, there are other methods
to compensate this delay.

5.2.1 Lag compensation. We already introduced the ba-
sic version of lag compensation, the server side reconstruc-
tion. Othermodern approaches utilize deep learningmethods
to reduce effects of latency[19] or advanced lag compen-
sation which uses additional checks on the client side as
well[21].

5.2.2 Client side initiation, Server-validation. To re-
duce the load on the server, it is also possible to calculate all
states on the client and only have the server validate critical

5



moments. This is used in Battlefield 1[10] when the shooter
has a ping under 150ms. Above this threshold, the shooter
has to lead their shot.

5.2.3 Specific Shot around a Corner prevention. Be-
cause the Shot around a Corner problem is one of the only
critical points of perceived unfairness, some approaches tar-
get this specifically with additional checks[21].

5.3 Design and art improvements
To increase the perceived fairness, it often helps to design
the game around the given limitations.

5.3.1 No compensation. Depending on the situation in
the game, the latencymight not even be realized. For example
if two players walk towards each other and one player shoots,
it does not matter if the shots are delayed. Another example
is when a player is shot but does not look in the direction
where the shot came from or did not get behind cover. The
player would not perceive this as unfair as well[5].

5.3.2 Delayed actions. One approach to cover up the la-
tency is to delay the actions. Often this is done by having
an animation that is played at the start of an action. During
that time the action can already be sent to the server but the
player does not realize the delay from the server feedback.

5.3.3 Local feedback. To increase the responsiveness, feed-
back of an action can already be provided at the client side.
This includes for firing a gun the muzzle flash or the hit
indication. Of course this can lead to misleading situations
when the server does not validate this action but is less rec-
ognizable than a delayed feedback[9].

5.3.4 Movement speed. The experienced effect of latency
is often directly connected to themovement speed of in-game
characters. So to reduce the effect, the movement speed can
be reduced as well. E.g. the distance where a player around
a corner is shot[20].

6 Conclusion
We established how to achieve a network concept which
is used as a basis in many current competitive multiplayer
games. By using a server-client architecture with validation
on the server which uses basic lag compensation, the player
experience is increased immensely in terms of fairness. With
this basis we can use other techniques which decrease the
effect of latency and increase the perceived fairness even
more. As a result we have a good structures which hides
the fact, that a real time game is processed delayed in the
background.

Acknowledgments
Special thanks go to my advisor Ljubica Kärkkäinen for giv-
ing me the freedom of choosing this topic and her motivating
feedback.

References
[1] fairness - cambridge dictionary, . URL https://dictionary.cambridge.

org/dictionary/english/fairness.
[2] GDC Session Summary: Halo networking - Wolfire Games Blog, .

URL http://blog.wolfire.com/2011/03/GDC-Session-Summary-Halo-
networking.

[3] Lag Compensation - Valve Developer Community, . URL https://
developer.valvesoftware.com/wiki/Lag_Compensation.

[4] Lag Compensation - Gabriel Gambetta, . URL https://www.
gabrielgambetta.com/lag-compensation.html.

[5] Source Multiplayer Networking - Valve Developer Community, .
URL https://developer.valvesoftware.com/wiki/Source_Multiplayer_
Networking.

[6] Unity report states 77% of gamers play multiplayer games, .
URL https://mobidictum.biz/unity-report-states-77-percent-gamers-
play-multiplayer/.

[7] What Every Programmer Needs To Know About Game Networking,
February 2010. URL https://gafferongames.com/post/what_every_
programmer_needs_to_know_about_game_networking/.

[8] Improving the Player Experience by Leveraging AWS Global Accel-
erator and Amazon GameLift FleetIQ | AWS for Games Blog, March
2021. URL https://aws.amazon.com/blogs/gametech/improving-
the-player-experience-by-leveraging-aws-global-accelerator-and-
amazon-gamelift-fleetiq/. Section: Amazon Cognito.

[9] The State of Hit Registration, December 2022. URL https://playvalorant.
com/en-us/news/dev/the-state-of-hit-registration/.

[10] Battle(non)sense. Netcode 101 - What You Need To Know, August
2017. URL https://www.youtube.com/watch?v=hiHP0N-jMx8.

[11] Battle(non)sense. Battlefield V Netcode Issues Tested & Explained, De-
cember 2018. URL https://www.youtube.com/watch?v=8Kvj5TZNNJ4.

[12] Battle(non)sense. Fortnite 4.2’s Netcode Beats CS:GO And BF1!?, May
2018. URL https://www.youtube.com/watch?v=W5lUCeAu_2k.

[13] Battle(non)sense. Apex Legends Netcode Changes, June 2019. URL
https://www.youtube.com/watch?v=xRj3KZJCDiM.

[14] David Chan. Perceptions of fairness.
[15] Daposto. Game Networking (9) — Bonus, Overwatch Model, July

2020. URL https://daposto.medium.com/game-networking-9-bonus-
overwatch-model-4faba078cf05.

[16] Daposto. Game Networking (3) - RTT, PING, latency, lag, July
2020. URL https://daposto.medium.com/game-networking-3-rtt-ping-
latency-lag-679b73b274ae.

[17] DevinDTV. How ItWorks: Lag compensation and Interp in CS:GO, No-
vember 2015. URL https://www.youtube.com/watch?v=6EwaW2iz4iA.

[18] Andrej Hadji-Vasilev. 23 Online Gaming Statistics, Facts & Trends for
2023, March 2022. URL https://www.cloudwards.net/online-gaming-
statistics/.

[19] David Halbhuber. To Lag or Not to Lag: Understanding and Compen-
sating Latency in Video Games. In Extended Abstracts of the Annual
Symposium on Computer-Human Interaction in Play, pages 370–373,
Bremen Germany, November 2022. ACM. ISBN 978-1-4503-9211-2. doi:
10.1145/3505270.3558364. URL https://dl.acm.org/doi/10.1145/3505270.
3558364.

[20] Steven W. K. Lee and Rocky K. C. Chang. On "shot around a corner" in
first-person shooter games. In 2017 15th Annual Workshop on Network
and Systems Support for Games (NetGames), pages 1–6, Taipei, Taiwan,
June 2017. IEEE. ISBN 978-1-5090-5038-3. doi: 10.1109/NetGames.2017.
7991545. URL http://ieeexplore.ieee.org/document/7991545/.

[21] Steven W. K. Lee and Rocky K. C. Chang. Enhancing the experience
of multiplayer shooter games via advanced lag compensation. In
Proceedings of the 9th ACM Multimedia Systems Conference, pages
284–293, Amsterdam Netherlands, June 2018. ACM. ISBN 978-1-4503-
5192-8. doi: 10.1145/3204949.3204971. URL https://dl.acm.org/doi/10.
1145/3204949.3204971.

6

https://dictionary.cambridge.org/dictionary/english/fairness
https://dictionary.cambridge.org/dictionary/english/fairness
http://blog.wolfire.com/2011/03/GDC-Session-Summary-Halo-networking
http://blog.wolfire.com/2011/03/GDC-Session-Summary-Halo-networking
https://developer.valvesoftware.com/wiki/Lag_Compensation
https://developer.valvesoftware.com/wiki/Lag_Compensation
https://www.gabrielgambetta.com/lag-compensation.html
https://www.gabrielgambetta.com/lag-compensation.html
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://mobidictum.biz/unity-report-states-77-percent-gamers-play-multiplayer/
https://mobidictum.biz/unity-report-states-77-percent-gamers-play-multiplayer/
https://gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking/
https://gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking/
https://aws.amazon.com/blogs/gametech/improving-the-player-experience-by-leveraging-aws-global-accelerator-and-amazon-gamelift-fleetiq/
https://aws.amazon.com/blogs/gametech/improving-the-player-experience-by-leveraging-aws-global-accelerator-and-amazon-gamelift-fleetiq/
https://aws.amazon.com/blogs/gametech/improving-the-player-experience-by-leveraging-aws-global-accelerator-and-amazon-gamelift-fleetiq/
https://playvalorant.com/en-us/news/dev/the-state-of-hit-registration/
https://playvalorant.com/en-us/news/dev/the-state-of-hit-registration/
https://www.youtube.com/watch?v=hiHP0N-jMx8
https://www.youtube.com/watch?v=8Kvj5TZNNJ4
https://www.youtube.com/watch?v=W5lUCeAu_2k
https://www.youtube.com/watch?v=xRj3KZJCDiM
https://daposto.medium.com/game-networking-9-bonus-overwatch-model-4faba078cf05
https://daposto.medium.com/game-networking-9-bonus-overwatch-model-4faba078cf05
https://daposto.medium.com/game-networking-3-rtt-ping-latency-lag-679b73b274ae
https://daposto.medium.com/game-networking-3-rtt-ping-latency-lag-679b73b274ae
https://www.youtube.com/watch?v=6EwaW2iz4iA
https://www.cloudwards.net/online-gaming-statistics/
https://www.cloudwards.net/online-gaming-statistics/
https://dl.acm.org/doi/10.1145/3505270.3558364
https://dl.acm.org/doi/10.1145/3505270.3558364
http://ieeexplore.ieee.org/document/7991545/
https://dl.acm.org/doi/10.1145/3204949.3204971
https://dl.acm.org/doi/10.1145/3204949.3204971


[22] Shengmei Liu, Mark Claypool, Atsuo Kuwahara, James Scovell, and
Jamie Sherman. The Effects of Network Latency on Competitive First-
Person Shooter Game Players. In 2021 13th International Conference
on Quality of Multimedia Experience (QoMEX), pages 151–156, Mon-
treal, QC, Canada, June 2021. IEEE. ISBN 978-1-66543-589-5. doi:
10.1109/QoMEX51781.2021.9465419. URL https://ieeexplore.ieee.org/
document/9465419/.

[23] Jose Saldana and Mirko Suznjevic. QoE and Latency Issues in Net-
worked Games. In Ryohei Nakatsu and Matthias Rauterberg, editors,
Handbook of Digital Games and Entertainment Technologies, pages
1–36. Springer Singapore, Singapore, 2015. ISBN 978-981-4560-52-8.
doi: 10.1007/978-981-4560-52-8_23-1. URL http://link.springer.com/10.
1007/978-981-4560-52-8_23-1.

7

https://ieeexplore.ieee.org/document/9465419/
https://ieeexplore.ieee.org/document/9465419/
http://link.springer.com/10.1007/978-981-4560-52-8_23-1
http://link.springer.com/10.1007/978-981-4560-52-8_23-1

	Abstract
	1 Introduction
	2 Fairness
	2.1 Perceived unfairness in FPS
	2.2 False case of unfairness

	3 Background Networking
	3.1 Network Connection
	3.2 Network architecture

	4 Basic Client-Server interaction
	4.1 Player Movement
	4.2 Player 1 shooting and Player 2 moving
	4.3 Remaining Problems

	5 Solutions
	5.1 Reducing Latency
	5.2 Compensation methods
	5.3 Design and art improvements

	6 Conclusion
	Acknowledgments
	References

